Northern Fur Seal Publications

 

Field Reseach Publications


2017
 
Evidence of molting and the function of 'rock-nosing' behavior in bowhead whales in the eastern Canadian Arctic.
Fortune, S. M. E., W. R. Koski, J. W. Higdon, A. W. Trites, M. F. Baumgartner and S. H. Ferguson. 2017.
PLoS ONE, pages: e0186156 Vol 12(1)
abstract
Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas --likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.
show/hide abstract View Reference

Accelerometers can measure total and activity-specific energy expenditure in free-ranging marine mammals only if linked to time-activity budgets.
Jeanniard du Dot, T., C. Guinet, J. P. Y. Arnould, J. R. Speakman and A. W. Trites. 2017.
Functional Ecology 31:377-386.
abstract
1-Energy expenditure is an important component of foraging ecology, but is extremely difficult to estimate in free-ranging animals and depends on how animals partition their time between different activities during foraging. Acceleration data has emerged as a new way to determine energy expenditure at a fine scale but needs to be tested and validated in wild animals. 2-This study investigated whether vectorial dynamic body acceleration (VeDBA) could accurately predict the energy expended by marine predators during a full foraging trip. We also aimed to determine whether the accuracy of predictions of energy expenditure derived from acceleration increased when partitioned by different types of at-sea activities (i.e., diving, transiting, resting and surface activities) vs calculated activity-specific metabolic rates. 3-To do so, we equipped 20 lactating northern (Callorhinus ursinus) and 20 Antarctic fur seals (Arctocephalus gazella) with GPS, time-depth recorders and tri-axial accelerometers, and obtained estimates of field metabolic rates using the doubly-labelled water (DLW) method. VeDBA was derived from tri-axial acceleration, and at-sea activities (diving, transiting, resting and surface activities) were determined using dive depth, tri-axial acceleration and traveling speed. 4-We found that VeDBA did not accurately predict the total energy expended by fur seals during their full foraging trips (R2 = 0.36). However, the accuracy of VeDBA as a predictor of total energy expenditure increased significantly when foraging trips were partitioned by activity and used activity-specific VeDBA paired with time activity budgets (R2 = 0.70). Activity-specific VeDBA also accurately predicted the energy expenditures of each activity independent of each other (R2 > 0.85). 5-Our study confirms that acceleration is a promising way to estimate energy expenditures of free-ranging marine mammals at a fine scale never attained before. However, it shows that it needs to be based on the time-activity budget that make up foraging trips rather than being derived as a single measure of VeDBA applied to entire foraging trips. Our activity-based method provides a cost-effective means to accurately calculate energy expenditures of fur seals using acceleration and time-activity budgets, a stepping stone for numerous other research fields.

keywords     Antarctic fur seal, Arctocephalus gazella, Callorhinus ursinus, diving, energy expenditure, foraging, metabolic rate, northern fur seal, time-activity budget
show/hide abstract View Reference

Combining hard-part and DNA analyses in scats with biologging and stable isotopes can reveal different diet compositions and feeding strategies within a population.
Jeanniard-du-Dot, T., A. C. Thomas, Y. Cherel, A. W. Trites and C. Guinet. 2017.
Marine Ecology Progress Series 584:1-16.
abstract
Accurately estimating predators' diets at relevant spatial and temporal scales is key to understanding animals' energetics and fitness, particularly in populations whose decline might be related to their diet such as northern fur seals Callorhinus ursinus. Our goals were to improve the accuracy of diet estimates and extend understanding of feeding ecology by combining 2 scat-based methods of diet determination (hard-part identification and DNA-metabarcoding) with stable isotope measurements and individual behavioural data. We collected 98 scats on a northern fur seal breeding colony. We also tracked 20 females with biologgers, and took blood samples to determine δ13C and δ15N values as proxies for seal foraging habitat and diet. Results show that diet composition from hard-parts analysis corresponded well with DNA results, with DNA yielding a greater diversity of prey species at a finer taxonomic level. Overall, scat-based methods showed that seals mostly fed on neritic shelf-associated prey. Cluster analyses of combined hard-parts and DNA results however identified 2 diet groups, one mostly neritic and the other mostly pelagic. Stable isotopes and behavioural data revealed that 40% of seals fed in oceanic waters on pelagic prey. This is more than indicated by scat-based analyses, which are likely biased towards animals foraging closest to the colony and underestimate some dietary specializations within the population. Consequently, the combination of multiple methods for diet identification with at-sea tracking of individuals can help identify and quantify specialist groups within a population and provide a wider spatial and temporal ecological context for dietary analysis.
show/hide abstract View Reference

2016
 
Flipper strokes can predict energy expenditure and locomotion costs in free-ranging northern and Antarctic fur seals.
Jeanniard du Dot, T., A.W. Trites J.P.Y. Arnould, and C. Guinet. 2016.
Scientific Reports. 6:33912
abstract
Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has not been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labeled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6-1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R2 = 0.76) and to a lesser extent while transiting (R2 = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R2 = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude x number of strokes) predicted total energy expenditure (R2 = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.

keywords     accelerometer, energy expenditure, field metabolic rate, doubly-labelled-water, flipper strokes, cost of transport, ODBA, VeDBA, northern fur seal, Antarctic fur seal
show/hide abstract View Reference Learn more about what was found

Bayesian data fusion approaches to predicting spatial tracks: application to marine mammals.
Liu, Y., J. V. Zidek, A. W. Trites and B. C. Battaile. 2016.
Annals of Applied Statistics 10:1517-1546.
abstract
Bayesian Melding (BM) and downscaling are two Bayesian approaches commonly used to combine data from different sources for statistical inference. We extend these two approaches to combine accurate but sparse direct observations with another set of high-resolution but biased calculated observations. We use our methods to estimate the path of a moving or evolving object and apply them in a case study of tracking northern fur seals. To make the BM approach computationally feasible for high dimensional (big) data, we exploit the properties of the processes along with approximations to the likelihood to break the high dimensional problem into a series of lower dimensional problems. To implement the alternative, downscaling approach, we use R-INLA to connect the two sources of observations via a linear mixed effect model. We compare the predictions of the two approaches by cross-validation as well as simulations. Our results show that both approaches yield similar results— both provide accurate, high resolution estimates of the atea locations of the northern fur seals, as well as Bayesian credible intervals to characterize the uncertainty about the estimated movement paths.

keywords     Bayesian Melding, Downscaling, Bio-logging, Conditional independence, INLA, Dead-Reckoning, Tracking, Marine mammals
show/hide abstract View Reference Learn more about what was found

2015
 
Foraging a new trail with northern fur seals (Callorhinus ursinus): Lactating seals from islands with contrasting population dynamics have different foraging strategies, and forage at scales previously unrecognized by GPS interpolated dive data.
Battaile, B.C., C.A. Nordstrom, N. Liebsch and A.W. Trites. 2015.
Marine Mammal Science 31:1494-1520.
abstract
We reconstructed the foraging tracks of lactating northern fur seals (Callorhinus ursinus) from two eastern Bering Sea islands (St. Paul Island and Bogoslof Island) using linear interpolation between GPS locations recorded at a maximum of four times per hour and compared it to tri-axial accelerometer and magnetometer data collected at 16 Hz to reconstruct pseudotracks between the GPS fixes. The high-resolution data revealed distances swum per foraging trip were much greater than the distances calculated using linearly interpolated GPS tracks (1.5 times further for St. Paul fur seals and 1.9 times further for Bogoslof fur seals). First passage time metrics calculated from the high resolution data revealed that the optimal scale at which the seals searched for prey was 500 m (radius of circle searched) for fur seals from St. Paul Island that went off-shelf, and 50 m for fur seals from Bogoslof Island and surprisingly, 50 m for fur seals from St. Paul that foraged on-s helf. These area-restricted search scales were significantly smaller than those calculated from GPS data alone (12 km for St. Paul and 6 km for Bogoslof) indicating that higher resolution movement data can reveal novel information about foraging behaviors that have important ecological implications.

keywords     foraging ecology, biologging, northern fur seal, Callorhinus ursinus, marine mammal, Bering Sea, magnetometer, accelerometer, spatial analysis, area restricted search
show/hide abstract View Reference Learn more about what was found

Accelerometers identify new behaviors and show little difference in the activity budgets of lactating northern fur seals (Callorhinus ursinus) between breeding islands and foraging habitats in the eastern Bering Sea.
Battaile, B.C., K.Q. Sakamoto, C.A. Nordstrom, D.A.S. Rosen and A.W. Trites. 2015.
PLoS ONE Vol 10(3):e0118761
abstract
We tagged 82 lactating northern fur seals (Callorhinus ursinus) with tri-axial accelerometers and magnetometers on two eastern Bering Sea islands (Bogoslof and St. Paul) with contrasting population trajectories. Using depth data, accelerometer data and spectral analysis we classified time spent diving (30%), resting (~7%), shaking and grooming their pelage (9%), swimming in the prone position (~10%) and two types of previously undocumented rolling behavior (29%), with the remaining time (~15%) unspecified. The reason for the extensive rolling behavior is not known. We ground-truthed the accelerometry signals for shaking and grooming and rolling behaviors—and identified the acceleration signal for porpoising—by filming tagged northern fur seals in captivity. Speeds from GPS interpolated data indicated that animals traveled fastest while in the prone position, suggesting that this behavior is indicative of destination-based swimming. Very little difference was found in the percentages of time spent in the categorical behaviors with respect to breeding islands (Bogoslof or St. Paul Island), forager type (cathemeral or nocturnal), and the region where the animals foraged (primarily on-shelf <200m, or off-shelf > 200m). The lack of significant differences between islands, regions and forager type may indicate that behaviors summarized over a trip are somewhat hardwired even though foraging trip length and when and where animals dive are known to vary with island, forager type and region.

keywords     seals, accelerometers, animal behavior, foraging, biological locomotion, sine wave, fur seal
show/hide abstract View Reference

Foraging strategies and efficiencies of lactating northern and Antarctic fur seals: implications for reproductive success.
Jeanniard du Dot, T. 2015.
PhD Thesis, University of British Columbia, Vancouver, B.C. 216 pages
abstract
Efficient extraction of energy from the environment is key to the survival and reproductive success of wild animals. Understanding the ratio of energy gained to energy spent of different foraging strategies (i.e., foraging efficiency) can shed light on how animals cope with environmental changes and how it affects population trajectories. I investigated how female foraging strategies during the breeding season impact the foraging efficiencies and reproductive successes of two fur seal species—one declining (NFS–northern fur seals, St. Paul Island, Alaska) and one increasing (AFS–Antarctic fur seals, Kerguelen Island, Southern Ocean). I also sought to develop new accelerometry-based methods to easily determine fine-scale energy expenditure at sea (VeDBA and flipper stroke metrics). Twenty lactating females of each species were captured and equipped with biologging tags to record GPS locations, depth and tri-axial acceleration. Energy expenditure for each foraging trip was measured using the doubly-labeled water method, and energy gained while foraging was determined from 1) diet composition (scat hard-parts and DNA) and blood stable isotope ratios; and 2) numbers of prey capture attempts (from head acceleration). Maternal investment in pups was determined from pup growth rates or from energy content of milk samples. Results showed acceleration metrics were only accurate at predicting energy expended by fur seals when time-activity budgets were taken into account (i.e., time spent performing different types of activity). Foraging strategies of AFS females resulted in efficiencies of ~3.4, with more efficient females producing bigger pups at weaning that had greater chances of survival. NFS females employed two foraging strategies with very different efficiencies (~1.4 vs. ~3.0) that were associated with different foraging habitats and diet qualities. However, NFS with the more efficient strategy (3.0) undertook longer foraging trips than the oth er NFS ( 1.4) or AFS (3.4), and thus fed their pups ~20% less frequently. As a consequence, the declining NFS (unlike the increasing AFS) had to compromise between the rate of energy acquisition and the pup feeding frequency. Such reductions in energy intake and time allocated to nursing pups can ultimately lower juvenile survival, and may explain the population decline of NFS in Alaska.

keywords     northern fur seals, St. Paul Island, Alaska, Antarctic fur seals, Kerguelen Island, foraging efficiency, foraging strategies, breeding season, reproductive successes, biologging, accelerometry, VeDBA, flipper stroke, doubly-labeled water, diet compos
show/hide abstract View Reference

Bias correction and uncertainty characterization of dead-reckoned paths of marine mammals.
Liu, Y., B.C. Battaile, A.W. Trites and J.V. Zidek. 2015.
Animal Biotelemetry 3(51):1-11.
abstract
Biologgers incorporating triaxial magnetometers and accelerometers can record animal movements at infra-second frequencies. Such data allow the Dead-Reckoned (DR) path of an animal to be reconstructed at high-resolution. However, poor measures of speed,undocumented movements caused by ocean currents, confounding between movement and gravitational acceleration and measurement error in the sensors, limits the accuracy and precision of DR paths. The conventional method for calculating DR paths attempts to reduce random errors and systematic biases using GPS observations without rigorous statistical justification or quantification of uncertainty in the derived swimming paths. Methods: We developed a Bayesian Melding (BM) approach to characterize uncertainty and correct for bias of DR paths. Our method used a Brownian Bridge process to combine the fine-resolution (but seriously biased) DR path and the sparse (but precise and accurate) GPS measurements in a statistically rigorous way. We also exploited the properties of underlying processes and some approximations to the likelihood to dramatically reduce the computational burden of handling large, high-resolution data sets. We implemented this approach in an R package "BayesianAnimalTracker", and applied it to biologging data obtained from northern fur seals (Callorhinus ursinus) foraging in the Bering Sea. We also tested the accuracy of our method using cross-validation analysis and compared it to the conventional bias correction of DR and linear interpolation between GPS observations (connecting two consecutive GPS observations by a straight line). Results: Our BM approach yielded accurate, high-resolution estimated paths with uncertainty quantified as credible intervals. Cross-validation analysis demonstrated the greater prediction accuracy of the BM method to reconstruct movements versus the conventional and linear interpolation methods. Moreover, the credible intervals covered the true path points albeit with probabilities somewhat higher than 95%. The GPS corrected high-resolution path also revealed that the total distance traveled by the northern fur seals we tracked was 40% - 50% further than that calculated by linear interpolation of the GPS observations.

keywords     Biologging; Dead-Reckoning; High-resolution animal tracking; Bayesian melding; energy expenditure; Global Positioning System; uncertainty statement; Brownian Bridge
show/hide abstract View Reference Learn more about what was found

2013
 
Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies.
Benoit-Bird, K. J., B. C. Battaile, S. A. Heppell, B. Hoover, D. Irons, N. Jones, K. J. Kuletz, C. A. Nordstrom, R. Paredes, R. M. Suryan, C. M. Waluk and A. W. Trites. 2013.
PLoS ONE Vol 8(1):e53348.
abstract
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three cooccurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physic al habitat also contributed significantly to characterizing predator patterns. Our results indicate that the smallscale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally.
show/hide abstract View Reference Learn more about what was found

Foraging behavior of northern fur seals closely matches the hierarchical patch scales of prey.
Benoit-Bird, K. J., B. C. Battaile, C. A. Nordstrom and A. W. Trites. 2013.
Marine Ecology Progress Series 479:283-302.
abstract
Marine prey often occur in hierarchical mosaics whereby small, high-density patches are nested inside of larger, lower density aggregations. We tested the extent to which the foraging behavior of a marine predator (northern fur seal Callorhinus ursinus) could be explained by the hierarchical patch structure of a dominant prey species (juvenile walleye pollock Theragra chalcogramma) in the eastern Bering Sea. Comparing the movements of satellite-tracked fur seals with ship-based acoustic surveys of prey revealed that fur seals did not randomly search for prey, but instead showed deviations in the distribution of step-lengths (distances between their foraging patches) corresponding to the distances between aggregations of prey. Scales of prey distribution varied between Bering Sea shelf and deep-water slope habitats, while spatial scale distributions of fur seals showed corresponding changes, indicating that their search strategies were not innate patterns decoupled from the environment. Fur seals tended to avoid the smallest prey patches in both shelf and slope habitats. They also avoided prey patches that were separated by large distances. Fur seals responded to several levels of prey patchiness simultaneously, resulting in strong correlations between predator and prey over the entire range of aggregation scales observed in juvenile pollock. Our results indicate that, despite having a varied diet, fur seal foraging paths were defined by juvenile pollock aggregations. The presence of hierarchical, scale-dependent aggregation in both predator and prey provides new insights into fur seal behavior and a means to predict the dynamics of their interactions with prey.

keywords     Patchiness, Spatial scale, Predator–prey, Foraging behavior, Hierarchical, Northern fur seal, Juvenile walleye pollock
show/hide abstract View Reference Learn more about what was found

Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea.
Nordstrom, C. A., B.C. Battaile, C. Cotté and A. W. Trites. 2013.
In Deep-Sea Research II: Topical Studies in Oceanography.  88-89:78-96.
abstract
The relationships between fine-scale oceanographic features, prey aggregations, and the foraging behavior of top predators are poorly understood. We investigated whether foraging patterns of lactating northern fur seals (Callorhinus ursinus) from two breeding colonies located in different oceanographic domains of the eastern Bering Sea (St. Paul Island˜shelf; Bogoslof Island˜oceanic) were a function of submesoscale oceanographic features. We tested this by tracking 87 lactating fur seals instrumented with bio-logging tags (44 St. Paul Island, 43 Bogoslof Island) during JulyˆSeptember, 2009. We identified probable foraging hotspots using first-passage time analysis and statistically linked individual areas of high-use to fine-scale oceanographic features using mixed-effects Cox-proportional hazard models. We found no overlap in foraging areas used by fur seals from the two islands, but a difference in the duration of their foraging trips˜trips from St. Paul Island were twice as long (7.9 d average) and covered 3-times the distance (600 km average) compared to trips from Bogoslof Island. St. Paul fur seals also foraged at twice the scale (mean radius = 12 km) of Bogoslof fur seals (6 km), which suggests that prey were more diffuse near St. Paul Island than prey near Bogoslof Island. Comparing first passage times with oceanographic covariates revealed that foraging hotspots were linked to thermocline depth and occurred near submesoscale surface fronts (eddies and filaments). St. Paul fur seals that mixed epipelagic (night) and benthic (day) dives primarily foraged on-shelf in areas with deeper thermoclines that may have concentrated prey closer to the ocean floor, while strictly epipelagic (night) foragers tended to use waters with shallower thermoclines that may have aggregated prey closer to the surface. Fur seals from Bogoslof Island foraged almost exclusively over the Bering Sea basin and appeared to hunt intensively along submesoscale fronts that may have converged prey within narrow bands near the surface. Bogoslof fur seals also foraged closer to their island which was surrounded by strong surface fronts, while fur seals from St. Paul Island traveled4100 km and extended some trips off-shelf to the basin to forage at similar oceanographic features. The relative distribution and accessibility of prey-concentrating oceano- graphic features can account for the observed inter-island foraging patterns, which may in turn have population level consequences for the two fur seal colonies.

keywords     Habitat selection, First-passage time, Submesoscale features, Finite-size Lyapunov exponent,Cox proportional hazard model, Alaska, Eastern Bering Sea
show/hide abstract View Reference Learn more about what was found

Northern fur seals augment ship-derived ocean temperatures with higher temporal and spatial resolution data in the eastern Bering Sea.
Nordstrom, C.A., K. J. Benoit-Bird, B.C. Battaile and A.W. Trites. 2013.
Deep Sea Research II 94:257-273.
abstract
Oceanographic data collected by marine vertebrates are increasingly being used in biological and physical studies under the assumption that data recorded by free-ranging animals are comparable to those from traditional vertical sampling. We tested this premise by comparing the water temperatures measured during a 2009 oceanographic cruise with those measured during 82 foraging trips by instrumented northern fur seals (Callorhinus ursinus) in the eastern Bering Sea. The animal-borne data loggers were equipped with a fast-response temperature sensor and recorded 6,492 vertical profiles to depths ≥ 50 m during long distance (up to 600 km) foraging trips. Concurrent sampling during the oceanographic cruise collected 247 CTD casts in the same 5-week period. Average temperature differences between ship casts and seal dives (0.60 ± 0.61 °C), when the two were within 1 day and 10 km of each other (n = 32 stations), were comparable to mean differences between adjacent 10 km ship casts (0.46 ± 0.44 °C). Isosurfaces were evaluated at region wide scales at depths of 1 m and 50 m while the entire upper 100 m of the water column was analyzed at finer-scales in highly sampled areas. Similar trends were noted in the temperature fields produced by ships or seals despite the differences in sampling frequency and distribution. However, the fur seal dataset was of higher temporal and spatial resolution and was thereby able to visualize finer-detail with less error than ship-derived data, particularly in dynamic areas. Integrating the ship and seal datasets provided temperature maps with an unprecedented combination of resolution and coverage allowing fine-scale processes on-shelf and over the basin to be described simultaneously. Fur seals (n = 65 trips) also collected 4,700 additional profiles post ship cruise which allowed ≥1 °C warming of the upper 100 m to be documented through mid-September, including regions where ship sampling has traditionally been sparse. Our data show that hydrographic information collected by wide-ranging, diving animals such as fur seals can contribute physical data comparable to, or exceeding those, of traditional sampling methods at regional or finer scales when the questions of interest coincide with the ecology of the species.
show/hide abstract View Reference Learn more about what was found

 

Lab Reseach Publications


(in press)
 
Proxies of energy expenditure for marine mammals: an experimental test of 'the time trap'.
Ladds, M. A., D. A. S. Rosen, D. J. Slip and R. G. Harcourt. (in press).
Scientific Reports
abstract
Direct measures of energy expenditure are difficult to obtain in marine mammals, and accelerometry may be a useful proxy. Recently its utility has been questioned as some analyses derived their measure of activity level by calculating the sum of accelerometry-based values and then comparing this summation to summed (total) energy expenditure (the so-called 'time trap'). To test this hypothesis, we measured oxygen consumption of captive fur seals and sea lions wearing accelerometers during submerged swimming and calculated total and rate of energy expenditure. We compared these values with two potential proxies of energy expenditure derived from accelerometry data: flipper strokes and dynamic body acceleration (DBA). Total number of strokes, total DBA, and submergence time all predicted total oxygen consumption (sVO2 ml kg−1). However, both total DBA and total number of strokes were correlated with submergence time. Neither stroke rate nor mean DBA could predict the rate of oxygen consumption (sV.O2 ml min−1 kg−1). The relationship of total DBA and total strokes with total oxygen consumption is apparently a result of introducing a constant (time) into both sides of the relationship. This experimental evidence supports the conclusion that proxies derived from accelerometers cannot estimate the energy expenditure of marine mammals.

keywords     energy expenditure, accelerometers, Steller sea lions
show/hide abstract

Telemetry tags increase the costs of swimming in northern fur seals, Callorhinus ursinus.
Rosen, D. A. S., C. D. Gerlinsky and A. W. Trites. (in press).
Marine Mammal Science
abstract
Animal-borne instruments have become a standard tool for collecting important data from marine mammals. However, few studies have examined whether placement of these data loggers affects the behavior and energetics of individual animals, potentially leading to biasing data. We measured the effect of two types of relatively small data loggers (<1% of animals

keywords     northern fur seals, Callorhinus ursinus, telemetry, bioenergetics, biologging, diving, swimming, marine mammal
show/hide abstract

Prey consumption by cetaceans reveals the importance of energy-rich food webs in the Bay of Biscay.
Spitz, J., V. Ridoux, A. W. Trites, S. Laran and M. Authiera. (in press).
Progress in Oceanography
abstract
Ecosystem-based management requires a clear understanding of marine ecosystem functioning, particularly the transfer of energy (consumption) to higher trophic levels. However, robust estimates of consumption are generally hampered by a dearth of data for predators (diet and abundance), and by methodological weaknesses. We undertook a comprehensive assessment of energy requirements and prey consumption for the 10 most abundant cetacean species in the Bay of Biscay (northeastern Atlantic Ocean, France) by combining recent data on their abundances from aerial surveys, and diets from stomach content analyses. We also incorporated functional considerations to group prey and address interspecific differences in the cost of living of cetaceans that are independent of body size. Species considered included harbour porpoise, common dolphins, striped dolphins, bottlenose dolphins, long-finned pilot whales, Risso's dolphins, sperm whales, Cuvier's beaked whales, minke whales and fin w hales. We used Monte Carlo resampling methods to estimate annual and seasonal (winter and summer) consumption over the continental shelf and slope

keywords     food webs, consumption, cetaceans, continental shelf, toothed whales, baleen whales
show/hide abstract

2016
 
Net energy gained by northern fur seals (Callorhinus ursinus) is impacted more by diet quality than by diet diversity.
Diaz Gomez, M, D.A.S. Rosen and A.W. Trites. 2016.
Canadian Journal of Zoology 94:123-135.
abstract
Understanding whether northern fur seals (Callorhinus ursinus (L., 1758)) are negatively affected by changes in prey quality or diversity could provide insights into their on-going population decline in the central Bering Sea. We investigated how six captive female fur seals assimilated energy from eight different diets consisting of four prey species (walleye pollock (Gadus chalcogrammus Pallas, 1814, formerly Theragra chalcogrammus (Pallas, 1814)), Pacific herring (Clupea pallasii Valenciennes in Cuvier and Valenciennes, 1847), capelin (Mallotus villosus (Muller, 1776)), and magister armhook squid (Berryteuthis magister (Berry, 1913))) fed alone or in combination. Net energy was quantified by measuring fecal energy loss, urinary energy loss, and heat increment of feeding. Digestible energy (95.9%-96.7%) was high (reflecting low fecal energy loss) and was negatively affected by ingested mass and dietary protein content. Urinary energy loss (9.3%-26.7%) increased significantly for high-protein diets. Heat increment of feeding (4.3%-12.4%) was significantly lower for high-lipid diets. Overall, net energy gain (57.9%-83.0%) was affected by lipid content and varied significantly across diets. Mixed-species diets did not provide any energetic benefit over single-species diets. Our study demonstrates that diet quality was more important in terms of energy gain than diet diversity. These findings suggest that fur seals consuming low-quality prey in the Bering Sea would be more challenged to obtain sufficient energy to satisfy energetic and metabolic demands, independent of high prey abundance.

keywords     northern fur seal, Callorhinus ursinus, net energy, mixed-species diets, diet quality
show/hide abstract View Reference Learn more about what was found

2015
 
Accelerometers identify new behaviors and show little difference in the activity budgets of lactating northern fur seals (Callorhinus ursinus) between breeding islands and foraging habitats in the eastern Bering Sea.
Battaile, B.C., K.Q. Sakamoto, C.A. Nordstrom, D.A.S. Rosen and A.W. Trites. 2015.
PLoS ONE Vol 10(3):e0118761
abstract
We tagged 82 lactating northern fur seals (Callorhinus ursinus) with tri-axial accelerometers and magnetometers on two eastern Bering Sea islands (Bogoslof and St. Paul) with contrasting population trajectories. Using depth data, accelerometer data and spectral analysis we classified time spent diving (30%), resting (~7%), shaking and grooming their pelage (9%), swimming in the prone position (~10%) and two types of previously undocumented rolling behavior (29%), with the remaining time (~15%) unspecified. The reason for the extensive rolling behavior is not known. We ground-truthed the accelerometry signals for shaking and grooming and rolling behaviors—and identified the acceleration signal for porpoising—by filming tagged northern fur seals in captivity. Speeds from GPS interpolated data indicated that animals traveled fastest while in the prone position, suggesting that this behavior is indicative of destination-based swimming. Very little difference was found in the percentages of time spent in the categorical behaviors with respect to breeding islands (Bogoslof or St. Paul Island), forager type (cathemeral or nocturnal), and the region where the animals foraged (primarily on-shelf <200m, or off-shelf > 200m). The lack of significant differences between islands, regions and forager type may indicate that behaviors summarized over a trip are somewhat hardwired even though foraging trip length and when and where animals dive are known to vary with island, forager type and region.

keywords     seals, accelerometers, animal behavior, foraging, biological locomotion, sine wave, fur seal
show/hide abstract View Reference

Resting metabolic rate and activity: Key components of seasonal variation in daily energy expenditure for the northern fur seal (Callorhinus ursinus).
Dalton, A. J. M., D. A. S. Rosen and A.W Trites. 2015.
Canadian Journal of Zoology 93(8):635-644.
abstract
Seasonal changes in daily energy expenditure (DEE) and its key underlying components (costs of resting metabolic rate (RMR), thermoregulation, activity, and growth) were measured to determine seasonal energy requirements, bioenergetic priorities, and potential times of year when unpredicted episodes of nutritional stress would have their greatest effect on female northern fur seals (Callorhinus ursinus L., 1758). The DEE of 6 captive juvenile female fur seals averaged 527.8 Ä… 65.7 kJ kg-1 d-1 (Ä… SD) and fluctuated seasonally (lower during summer and winter, and up to 20% greater in spring and fall). RMR also changed significantly with season, and was higher in the fall (potentially due to moulting or anticipated migratory activity). However, changes in RMR did not follow the same seasonal trend as those of DEE. The largest component of DEE was RMR (~ 80% on average), followed by the cost of activity (which may have driven some of the seasonal variations in DEE). In contrast, the energetic costs associated with growth and thermoregulation appeared negligible within the scope of overall energy expenditures. Elevated innate costs of RMR and higher growth rates in the fall and summer, respectively, suggest that inadequate nutrition could comparatively have greater negative effects on female fur seals during these seasons

keywords     northern fur seal, Callorhinus ursinus, daily energy expenditure,resting metabolic rate, activity, growth, thermoregulation
show/hide abstract View Reference

Feeding kinematics and performance of basal otariid pinnipeds, Steller sea lions and northern fur seals: implications for the evolution of mammalian feeding.
Marshall, C. D., D. A. S. Rosen and A. W. Trites. 2015.
Journal of Experimental Biology 218:3229-3240.
abstract
Feeding performance studies can address questions relevant to feeding ecology and evolution. Our current understanding of feeding mechanisms for aquatic mammals is poor. Therefore, we characterized the feeding kinematics and performance of five Steller sea lions (Eumetopias jubatus) and six northern fur seals (Callorhinus ursinus). We tested the hypotheses that both species use suction as their primary feeding mode, and that rapid jaw opening was related to suction generation. Steller sea lions used suction as their primary feeding mode, but also used a biting feeding mode. In contrast, northern fur seals only used a biting feeding mode. Kinematic profiles of Steller sea lions were all indicative of suction feeding (i.e. a small gape, small gape angle, large depression of the hyolingual apparatus and lip pursing). However, jaw opening as measured by gape angle opening velocity (GAOV) was relatively slow in Steller sea lions. In contrast to Steller sea lions, the GAOV of northern fur seals was extremely fast, but their kinematic profiles indicated a biting feeding mode (i.e. northern fur seals exhibited a greater gape, a greater gape angle and minimal depression of the hyolingual apparatus compared with Steller sea lions). Steller sea lions produced both subambient and suprambient pressures at 45 kPa. In contrast, northern fur seals produced no detectable pressure measurements. Steller sea lions have a broader feeding repertoire than northern fur seals, which likely enables them to feed on a greater variety of prey, in more diverse habitats. Based on the basal phylogenetic position of northern fur seals, craniodental morphological data of the Callorhinus lineage, and the performance data provided in this study, we suggest that northern fur seals may be exhibiting their ancestral feeding mode.

keywords     Otariidae, Callorhinus ursinus, Eumetopias jubatus,suction, biting, fossil pinnipeds
show/hide abstract View Reference Learn more about what was found

2014
 
Daily energy expenditure of northern fur seals: techniques and measurements.
Dalton, A.J.M. 2014.
M.Sc. Thesis, University of British Columbia, Vancouver, B.C. 129 pages
abstract
Seasonal changes in the daily energy expenditure (DEE) of captive northern fur seals (Callorhinus ursinus) and key components of their energy budget (cost of resting metabolism, thermoregulation, activity and growth) were examined to elucidate potential reasons for the species’ population decline in the wild. The average DEE of 6 females was 527.8 ± 65.7 kJ kg-1 d-1 and fluctuated seasonally (~20% greater in the fall than in the winter). Resting metabolism also changed significantly with season, and was higher in the fall (potentially due to molting or as preparation for migratory activity). While resting metabolism was the largest component of the DEE (~80% on average), it did not follow the same seasonal trend as DEE, and therefore was not the source of the seasonal variation in DEE. Cost of activity was the second major component of DEE and may explain the observed seasonal variations. Energetic costs associated with thermoregulation appeared to be negligible. The northern fur seals were thermally neutral in all seasons for all water temperatures tested (2 °C – 18 °C), except during the summer when immersed in 2 °C water. Comparing this broad thermal neutral zone to the average sea surface temperatures encountered by fur seals in the wild during annual migrations indicates that fur seals can likely exploit a large geographic area without added thermal metabolic costs. While the direct energetic costs of growth appeared to be negligible compared to DEE, the higher growth rates in the summer and elevated resting metabolism in the fall suggests that inadequate nutrition could have greater negative effects during these seasons. Two alternative proxies for measuring energy expenditure were tested and calibrated against respirometry for potential application to wild individuals. The doubly labeled water (DLW) method over-estimated DEE by 13.1 ± 16.5% compared to respirometry. In comparison, accelerometry over-estimated DEE, using fine time scale intervals of 60 and 15 min, by an average of 5.4 ± 29.3% and 13.8 ± 39.5%, respectively. Importantly, seasonal effects (and time of day for accelerometry) must be accounted for when estimating energy expenditure from measures of DLW and acceleration in free-swimming northern fur seals.

keywords     Northern Fur Seal, Daily Energy Expenditure, Thermoregulation, Activity, Resting Metabolic Rate, Growth, Doubly Labelled Water, Accelerometry, Respirometry
show/hide abstract View Reference

Broad thermal capacity facilitates the primarily pelagic existence of northern fur seals (Callorhinus ursinus).
Dalton, A.J.M., D.A.S. Rosen and A.W. Trites. 2014.
Marine Mammal Science 30:994-1013.
abstract
Thermoregulatory capacity may constrain the distribution of marine mammals despite having anatomical and physiological adaptations to compensate for the thermal challenges of an aquatic lifestyle. We tested whether subadult female northern fur seals (Callorhinus ursinus) experience increased thermoregulatory costs in water temperatures potentially encountered during their annual migration in the Bering Sea and North Pacific Ocean. Metabolic rates were measured seasonally in 6 captive female northern fur seals (2.75 to 3.5 yr old) in ambient air and controlled water temperatures of 2, 10, and 18 °C. Rates of oxygen consumption in ambient air (1 – 18 °C) were not related to environmental temperature except below 2.5 °C (winter only). However, metabolism was significantly higher during the fall seasonal trials (Sept – Oct) compared to other times of year, perhaps due to the costs of molting. The fur seals appeared thermally neutral in all seasons for all water temperat ures tested (2 – 18 °C) except during the summer when metabolic rates were higher in the 2 °C water. Comparing this broad thermal neutral zone to the average sea surface temperatures potentially encountered during annual migrations indicates wild fur seals can likely exploit a large geographic area without added thermal metabolic costs.
show/hide abstract View Reference Learn more about what was found

Season and time of day affect the ability of accelerometry and the doubly labeled water methods to measure energy expenditure in northern fur seals (Callorhinus ursinus).
Dalton, A.J.M., D.A.S. Rosen and A.W. Trites. 2014.
Journal of Experimental Marine Biology and Ecology 452:125-136.
abstract
Estimates of energy expenditure for free-ranging animals are essential to answering a range of fundamental questions in animal biology, but are challenging to obtain and difficult to validate. We simultaneously employed three methods to measure the energy expenditure of 6 captive female northern fur seals (Callorhinus ursinus) during 5-day trials across 4 seasons: respirometry (oxygen consumption), doubly labeled water (DLW), and accelerometry. The DLW method estimated that the fur seals expended 13.1 ? 16.5% more energy than indicated by the more direct measures of oxygen consumption. Accelerometry failed to predict the average mass specific rate of oxygen consumption (VË™ O2DEE) within the individual seasons over entire 5- day trials. However, on a finer time scale (15 or 60 min) and adjusted for time of day, accelerometry estimated energy expenditure within an average difference of 5.4 ? 29.3% (60 min intervals) and 13.8 ? 39.5% (15 min intervals) of respirometry measured values. Our findings suggest that accelerometers have the potential to be more effective than the DLW method for measuring energy expenditure of free-ranging animals. However, rates of oxygen consumption varied with season, independent of overall activity. Seasonal effects (and time of day for accelerometry) must therefore be accounted for when estimating energy expenditure from measures of DLW and acceleration of free-swimming northern fur seals. Such corrections required for estimating energy expenditures in northern fur seals have implications for using accelerometers and DLW to estimate the energy expenditure of other species.

keywords     accelerometry, Callorhinus ursinus, daily energy expenditure, doubly labeled water, northern fur seal, respirometry
show/hide abstract View Reference

Short-term episodes of imposed fasting have a greater effect on young northern fur seals (Callorhinus ursinus) in summer than in winter.
Rosen, D. A. S., B. L. Volpov and A. W. Trites. 2014.
Conservation Physiology 2:1-9.
abstract
Unexpected shortages of food may affect wildlife differently depending on the time of year it occurs. We imposed 48-hr fasts on six female northern fur seals (Callorhinus ursinus; ages 6 ? 24 months) to identify times of year when they might be particularly sensitive to interruptions in food supply. We monitored changes in their resting metabolic rates and their metabolic response to thermal challenges, and also examined potential bioenergetic causes for seasonal differences in body mass loss. Pre-fast metabolism of the fur seals while in ambient air or submerged in 4 ?C water was higher during summer (Jun-Sep) than winter (Nov-Mar), and submergence did not significantly increase metabolism indicating a lack of additional thermoregulatory costs. There was no evidence of metabolic depression following the fasting periods, nor did metabolism increase during the post-fast thermal challenge, suggesting that mass loss did not negatively impact thermoregulatory capacity. However, the fur seals lost mass at greater rates while fasting during the summer months when metabolism is normally high to facilitate faster growth rates (which would ordinarily have been supported by higher food intake levels). Our findings suggest that summer is a more critical time of year than winter for young northern fur seals to obtain adequate nutrition.
show/hide abstract View Reference Learn more about what was found

Thermal limits in young northern fur seals, Callorhinus ursinus.
Rosen, D.A.S. and A.W. Trites. 2014.
Marine Mammal Science 30(3):1014-1028.
abstract
The thermoregulatory abilities of northern fur seals (Callorhinus ursinus) during their first two years in the frigid waters of the North Pacific Ocean may limit their geographic distribution and alter the costs for exploiting different species of prey. We determined the thermoneutral zone of 6 young northern fur seals by measuring their metabolism in ambient air and controlled water temperatures (0-12 °C) from ages 8 to 24 mo. We found that the ambient air temperatures within our study (overall 1.5-23.9 °C) did not affect resting metabolic rates. Calculated lower critical temperatures in water varied between 3.9 and 8.0 °C, while an upper critical temperature in water was only discernible during a single set of trials. These thermal responses provide insight into the possible physiological constraints on foraging ecology in young northern fur seals, as well as the potential energetic consequences of ocean climate change and altered prey distributions.

keywords     Northern fur seal, Callorhinus ursinus, thermoregulation, metabolism, bioenergetics
show/hide abstract View Reference Learn more about what was found

2012
 
Assessing the physiological status of northern fur seal populations in North America with fecal hormones.
Atwood, E.M. 2012.
MSc thesis, University of British Columbia, Vancouver. 57 pages
abstract
The core breeding population of northern fur seals (Callorhinus ursinus) in North America has declined significantly since the 1980s on St. Paul Island (one of the Pribilof Islands) while the smaller nearby population at Bogoslof Island (eastern Bering Sea) has increased exponentially. Further south, the population of northern fur seals on San Miguel Island off the coast of Southern California has fluctuated between exponential growth and catastrophic declines associated with re-occurring El Nino events. The goal of my thesis was to asses the physiological status of these three breeding populations of northern fur seals in North America to determine whether nutritional differences could explain the different population trajectories. I collected fecal samples (scats) in July 2009 from these three islands and measured the fecal metabolites of two hormones ˜ a glucocorticoid associated with the stress response, and triiodothyronine (T3), a thyroid hormone associated with metabolic rate. I also assessed feeding conditions using diet and foraging data. I found that sub-adult males and lactating females on St. Paul Island experienced poorer feeding conditions (lower energy content food and longer feeding trips for lactating females) than at Bogoslof Island, but that only the females were nutritionally stressed. I also found that the San Miguel Island population differed physiologically compared to the northern populations in Alaska in terms of stress and nutritional status. The San Miguel fur seals were the most physiologically stressed of the North American fur seal populations (based on elevated levels of glucocorticoid metabolites). However, the stress was most likely related to heat stress and not food (based on low concentrations of T3 metabolites). The available hormone, diet, and foraging data from northern fur seals in North America suggest that lactating females were nutritionally stressed on St. Paul Island and heat stressed on San Miguel Island, and experienced better conditions on Bogoslof Island.
show/hide abstract View Reference

Effect of phylogeny and prey type on fatty acid calibration coefficients in three species of pinnipeds - implications for the QFASA dietary quantification technique.
Rosen, D. A. S. and D.J. Tollit. 2012.
Marine Ecology Progress Series 467:263-276.
abstract
Quantitative fatty acid signature analysis (QFASA) has been proposed as a technique for determining the long-term diet of animals. The method compares the fatty acid (FA) profiles of predators and potential prey items to estimate relative prey intake. We tested the assumptions of a key step in QFASA, the correction of predator FA signatures for metabolic processes through sets of calibration coefficients (CCs). We conducted long-term controlled feeding studies with captive Steller sea lions consuming herring and eulachon and northern fur seals consuming herring. We compared the results with data from harbour seals eating herring to evaluate the effects of phylogeny and prey type on individual CCs. Even within the limited extended dietary FA subset recommended for use by other researchers, we found that at least 41% of the CCs differed by family (otariid vs. phocid seals) and 58% differed by predator species (sea lion vs. fur seal), suggesting that CCs may be highly species- specific. We also found that 64% of the CCs differed by prey type (sea lions consuming herring vs. eulachon), which raises some fundamental implementation issues. We also found significant differences in diet predictions when the herring- and eulachon-derived sets of CCs were applied to an actual multi-species diet. CCs are presently used as a simple mathematical attempt to describe potentially complex biochemistry. The results of this study raise questions regarding the validity of using CCs derived from an alternative predator species, and highlight some fundamental issues regarding QFASA methodology that need to be addressed through further controlled studies.
show/hide abstract View Reference Learn more about what was found

Rates of maximum food intake in young northern fur seals (Callorhinus ursinus) and the seasonal effects of food intake on body growth.
Rosen, D., B.L. Young and A.W. Trites. 2012.
Canadian Journal of Zoology 90:61-91.
abstract
Accurate estimates of food intake and its subsequent affect on growth are required to understand the interaction between an animals‚ physiology and its biotic environment. We determined how food intake and growth of 6 young northern fur seals (Callorhinus ursinus L., 1758) responded seasonally to changes in food availability. Animals were given unrestricted access to prey for 8 hr per day on either consecutive days or on alternate days only. We found animals offered ad libitum food on consecutive days substantially increased their food intake over normal Œtraining‚ levels. However, animals that fasted on alternative days were unable to compensate by further increasing their levels of consumption on subsequent feeding days. Absolute levels of food intake were highly consistent during winter and summer trials (2.7 ˆ 2.9 kg d-1), but seasonal differences in body mass meant that fur seals consumed more food relative to their body mass in summer (~27%) than in winter (~20%). Despite significant increases in absolute food intake during both seasons, the fur seals did not appear to efficiently convert this additional energy into mass growth, particularly in the winter. These seasonal differences in conversion efficiencies and estimates of maximum intake rates can be used to generate physiologically realistic predictions about the effect of changes in food availability on an individual fur as well as the consequences for an entire population.
show/hide abstract View Reference Learn more about what was found